来自巴斯大学计算机科学教授Simon J.D. Prince撰写的《理解深度学习》新书,共有19章,从机器学习基础概念到深度学习各种模型,包括最新的Transformer和图神经网络,比较系统全面,值得关注。

Chapter 1 - 导论 Introduction Chapter 2 - 监督学习 Supervised learning Chapter 3 - 浅层神经网络 Shallow neural networks Chapter 4 - 深度神经网络 Deep neural networks Chapter 5 - 损失函数 Loss functions Chapter 6 - 训练模型 Training models Chapter 7 - 梯度与初始化 Gradients and initialization Chapter 8 - 度量性能 Measuring performance Chapter 9 - 正则化 Regularization Chapter 10 - 卷积网络 Convolutional nets Chapter 11 - 残差网络 Residual networks and BatchNorm Chapter 12 - Transformers Chapter 13 - 图神经网络 Graph neural networks Chapter 14 -变分自编码器 Variational auto-encoders Chapter 15 - Normalizing flows Chapter 16 - 生成对抗网络 Generative adversarial networks Chapter 17 - 扩散模型 Diffusion models Chapter 18 - 深度强化学习 Deep reinforcement learning Chapter 19 - 为什么深度学习有效 Why does deep learning work?

成为VIP会员查看完整内容
153

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
112+阅读 · 2020年11月12日
专知会员服务
162+阅读 · 2020年1月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员