在本研究中,我们提出了一种基于最短路径建模的新型去噪扩散模型,该模型通过优化残差传播(residual propagation),以提高去噪效率和生成质量。受到去噪扩散隐式模型(DDIM, Denoising Diffusion Implicit Models)及图论(graph theory)启发,我们提出的模型Shortest Path Diffusion Model(ShortDF),将去噪过程视为一个最短路径问题,旨在最小化重建误差(reconstruction error)。 通过优化初始残差(initial residuals),ShortDF能够提高反向扩散过程(reverse diffusion process)的效率,并提升生成样本的质量。我们在多个标准基准数据集上进行了广泛实验,结果表明,与现有方法相比,ShortDF能够显著减少扩散时间(或步数),同时提升生成样本的视觉保真度(visual fidelity)。我们认为,该研究为**交互式扩散模型应用(interactive diffusion-based applications)奠定了基础,并为快速数据生成(rapid data generation)**提供了新思路。 **代码开源地址:**https://github.com/UnicomAI/ShortDF

成为VIP会员查看完整内容
16

相关内容

【NeurIPS 2024 Oral】用于多条件分子生成的图扩散Transformer
专知会员服务
16+阅读 · 2024年10月5日
【NeurIPS2024】释放扩散模型在小样本语义分割中的潜力
专知会员服务
17+阅读 · 2024年10月4日
【AAAI2023】对抗性权重扰动提高图神经网络的泛化能力
专知会员服务
19+阅读 · 2022年12月12日
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
174+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
494+阅读 · 2023年3月31日
VIP会员
相关VIP内容
【NeurIPS 2024 Oral】用于多条件分子生成的图扩散Transformer
专知会员服务
16+阅读 · 2024年10月5日
【NeurIPS2024】释放扩散模型在小样本语义分割中的潜力
专知会员服务
17+阅读 · 2024年10月4日
【AAAI2023】对抗性权重扰动提高图神经网络的泛化能力
专知会员服务
19+阅读 · 2022年12月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
相关论文
Arxiv
174+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
494+阅读 · 2023年3月31日
微信扫码咨询专知VIP会员