报告主题:知识指导的自然语言处理

报告摘要:近年来深度学习技术席卷自然语言处理(NLP)各大领域。作为典型的数据驱动方法,深度学习面临可解释性不强等难题,如何将人类积累的大量语言知识和世界知识引入深度学习模型,是改进NLP深度学习模型性能的重要方向,同时也面临很多挑战。本报告将介绍知识指导的自然语言处理的最新进展与趋势。

邀请嘉宾:林衍凯,腾讯微信模式识别中心高级研究员。博士毕业于来自清华大学自然语言处理组, 由孙茂松教授和刘知远副教授共同指导,主要研究方向为知识图谱表示、构建和应用。目前已在人工智能、自然语言处理等领域的著名国际会议IJCAI,AAAI,EMNLP,ACL发表相关论文多篇,Google Scholar引用数超过1400。曾获2017年百度奖学金、2018年清华大学学术新秀。

成为VIP会员查看完整内容
5_CCKS_ATT_YankaiLin.pdf
48

相关内容

林衍凯,腾讯微信模式识别中心高级研究员。博士毕业于来自清华大学自然语言处理组, 由孙茂松教授和刘知远副教授共同指导,主要研究方向为知识图谱表示、构建和应用。目前已在人工智能、自然语言处理等领域的著名国际会议IJCAI,AAAI,EMNLP,ACL发表相关论文多篇,Google Scholar引用数超过1400。曾获2017年百度奖学金、2018年清华大学学术新秀。
CAAI-AIDL 第六期《自然语言处理》丨 京东何晓冬,清华大学唐杰
中国人工智能学会
10+阅读 · 2018年12月16日
刘知远 | 语义表示学习
开放知识图谱
16+阅读 · 2018年8月9日
报名 | 知识图谱前沿技术课程(苏州大学站)
PaperWeekly
12+阅读 · 2017年11月27日
Arxiv
6+阅读 · 2019年4月25日
VIP会员
相关资讯
CAAI-AIDL 第六期《自然语言处理》丨 京东何晓冬,清华大学唐杰
中国人工智能学会
10+阅读 · 2018年12月16日
刘知远 | 语义表示学习
开放知识图谱
16+阅读 · 2018年8月9日
报名 | 知识图谱前沿技术课程(苏州大学站)
PaperWeekly
12+阅读 · 2017年11月27日
微信扫码咨询专知VIP会员